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Abstract. The out-of-plane hysteresis loops of small arrays of magnetic nanoparticles, under the influence
of an external field applied perpendicular to the array and the dipolar interaction are investigated. The
particles are assumed to have a perpendicular anisotropy energy that tends to align the magnetic moments
to be perpendicular to the array. The magnetization is found to exhibit a plateaux-and-jumps structure as
the external field is swept up and down. These jumps are associated with jumps in the energy of the system,
and correspond to transition from one configuration of the moment orientation to another. The energy of
different configurations of the magnetic moments for a 3× 3 array in the limit of weak dipolar interaction
is analyzed, as a means to understand the hysteresis loop. These jumps are more pronounced in arrays of
smaller sizes and when the dipolar interaction is weak. The configuration of magnetic moments at zero
external field as the field is swept up and down is found to be highly sensitive to the dipolar interaction.

PACS. 75.60.Ej Magnetization curves, hysteresis, Barkhausen and related effects – 75.60.Jk Magnetization
reversal mechanisms – 75.75.+a Magnetic properties of nanostructures

1 Introduction

Arrays of single-domain magnetic dots are of substantial
current research interest due to their potential applica-
tions in future ultrahigh-density magnetic storage media
and magnetic field sensors [1–7]. In these systems, each
nanoparticle or dot may be regarded as a giant magnetic
dipole. In patterned arrays, the dipolar field may be com-
parable to the bulk anisotropy field due to high packing
density of the particles and it may strongly affect static
magnetic ordering and magnetization processes. Under-
standing the magnetic properties in such systems is, there-
fore, essential to the design of devices.

Of particular interest is the magnetization process
in finite and small arrays. Kayali et al. [8] and Stamps
et al. [9,10] found that magnetic ordering and hysteresis
are strongly affected by the array size and the direction
of the external applied field in a finite array of particles
with magnetic moments constrained to be parallel to the
array. Experimentally, Ross et al. [4], for example, stud-
ied patterned arrays of cylindrical nanoparticles of large
aspect (height/diameter) ratio. These particles exhibit
single-domain behavior and their easy axes are aligned
perpendicular to the substrate surface, as a result of both
shape anisotropy and magnetocrystalline anisotropy. For
the weak dipolar interaction regime studied in their exper-
iments, these particles have their moments pointed either
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“up” or “down”, with respect to the direction perpen-
dicular to the array. The strength of dipolar interaction
is related to the separation between the magnetic parti-
cles and the relative orientations of the interacting mag-
netic moments. Therefore, a finite array of magnetic dots
with magnetic moments not restricted to lie parallel to
the plane of the array due to possibly large perpendicular
anisotropy is expected to exhibit different properties from
an array consisting only of in-plane magnetic moments [8].
In particular, the effects of dipolar interaction would be
important in high-density patterned arrays. Fabrication
of arrays of magnetic dots with controllable anisotropy
thus opens up a further possibility in arriving at desirable
magnetic properties.

In the present work, we study the hysteresis of an in-
teracting array of nanoparticles with magnetic moments
free to point at any direction in three-dimensional space
under the influence of a perpendicular anisotropy energy
and an external field applied perpendicular to the array.
Our study is thus a generalization of the recent work of
Kayali et al. [8] on in-plane hysteresis. Each particle is
assumed to have a large perpendicular anisotropy, and
the magnetic dipolar interaction between all particles in
the array is taken into account. It is found that the mag-
netic properties of small arrays are highly sensitive to the
strength of dipolar interaction and the size of the array.
The magnetization exhibits a plateaux-and-jumps struc-
ture as the external field is swept up and down. These
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jumps are associated with jumps in the energy of the
system, and correspond to transition from one configu-
ration of the moment orientation to another. We analyze
the energy of different configurations for a 3 × 3 array in
the limit of weak dipolar interaction. The configuration
of magnetic moments at zero external field as the field is
swept up and down is found to be highly sensitive to the
dipolar interaction.

2 Model of calculation

The hysteresis in an array of coupled magnetic moments
can be studied via the Landau-Lifshitz-Gilbert (LLG)
equation, which is an equation of motion for each of the
moments. We consider a square array of identical mag-
netic dots. Each dot is treated as a single-domain particle
with an effective magnetic moment m. The ith dot is lo-
cated at ri = pax̂ + qaŷ, where a is the lattice constant
and p and q are integers. The equation of motion of the ith
magnetic moment can be described by the LLG equation
[11] as

dmi

dt
= −γmi × Hi +

α

m
mi × dmi

dt
, (1)

where γ is the gyromagnetic ratio and α represents the
rate of dissipation. The local magnetic field Hi at site ri

includes various contributions:

Hi = he + hdip + kmziẑ , (2)

where he is an external magnetic field, and kmziẑ =
(2K/Ms)mziẑ is the single-particle effective anisotropy
field perpendicular to the array [11] with K being the
anisotropy energy and Ms the saturated magnetization of
the particle. The dipolar field hdip acting on the ith mo-
ment can be expressed as

hdip =
∑

j �=i

[
3(rij · mj)rij

r5
ij

− mj

r3
ij

]
, (3)

where the sum is over all the other particles in the array.
Assuming that |mi| = m for all particles, the ith mo-

ment can then be fully specified by the angles (θi, φi) de-
scribing the orientation of mi, where θ is the polar angle
measured from the normal (ẑ-direction) and φ is the az-
imuthal angle as defined in the spherical coordinates. It is
convenient to define t′ = tMsγ

(
1 + α2

)−1 and to measure
time in units of t′. It follows from equation (1) that the
orientation of mi evolves in time as [12]
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where Hix, Hiy, Hiz are the Cartesian components of Hi.
It is convenient to normalize the magnetization and

fields by the magnetization in a dot Ms and to measure
separations in units of the lattice constant a. The dipolar
field can then be rewritten in a reduced form

hdip

Ms
= hd

∑

j �=i

3(r̂ij · m̂j)r̂ij − m̂j

r̃3
ij

, (6)

where r̂ij is a unit vector pointing from the dipole moment
mi to mj , mj = mm̂j, and r̃ij = rij/a. The dipolar
interaction strength is then represented by the parameter
hd given by

hd =
m

a3Ms
=

V

a3
, (7)

where V is the volume of a dot. Obviously, hd increases as
the volume of the particles increases with a fixed lattice
constant.

We study the hysteresis loops for square arrays of size
N × N with N = 3, ..., 10 subject to an external mag-
netic field applied perpendicular to the array, by solving
equations (4–5) numerically using the fourth-order Runge-
Kutta method. We sweep the external field he = heẑ,
starting with a strong field he = +H0 for which all the
moments are aligned along the +ẑ-direction. The field
strength he is then gradually decreased in increments of
δh to −H0, followed by an increase back to +H0. At each
value of he, equations (4 and 5) are solved for the orienta-
tions of the moments in the long time limit. This amounts
to solving 2N2 coupled equations for an N ×N array. To
study the hysteresis loop, we use the steady state config-
uration obtained for the field he ± δh as the initial con-
figuration for solving the equations for the field he when
we sweep the field down and up. We apply a very small
transverse bias field hb (hb/k = 10−6) in the x̂-direction to
destabilize the initial configurations with all the moments
pointing upwards so that the steady state can be achieved
more readily [13]. We have checked that the small bias
field hb would not affect the steady state magnetic config-
urations. To further accelerate our calculations, we use a
rather large damping constant (α = 1.0). The choice of α,
while affecting the time to reach the steady state, does not
affect the final steady state configuration of the magnetic
moments. In addition, we assume a large positive reduced
anisotropic field k/Ms = 2.0 perpendicular to the array
for the particles, as a model of single-domain particles in
which there are both shape anisotropy (e.g., in cylindrical
particles with large aspect ratios) and magnetocrystalline
anisotropy.

3 Results and discussion

Figure 1 shows the ẑ-component of the magnetization Mz

in a 3 × 3 array as a function of the applied field for sev-
eral values of hd representing different dipolar interaction
strengths. The magnetization is normalized by the satura-
tion magnetization M0 of the array. Note that for widely
separated particles (or negligible hd) where the particles
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Fig. 1. Hysteresis loops for a 3×3 array of magnetic nanopar-
ticles for different values of the dipolar interaction strength hd.
(a) hd = 0.4, (b) hd = 0.6, (c) hd = 1.0, (d) hd = 1.4.

become effectively isolated, the hysteresis loop is expected
to take on a squared shape [6,14] as a result of the perpen-
dicular anisotropy. Here we explore how the magnetization
processes in a small array may depend on the dipolar inter-
action. When the dipolar interaction is weak (see Figs. 1a
and 1b), the magnetization exhibits abrupt jumps. These
jumps exist both for decreasing and increasing fields, but
the values of he at which the jumps occur are different in
these two cases. These jumps are caused by the effects of
the strong perpendicular anisotropy, the dipolar interac-
tion and the Zeeman energy. Due to the strong anisotropy,
the moments preferentially tend to align perpendicular to
the array, either along the +ẑ or the −ẑ direction. The
dipolar interaction tends to align the neighboring mo-
ments to be anti-parallel to each other. With these two
factors, the steady states still have the moments aligned
normal to the array. As the external field decreases, the
number of moments aligned with the −ẑ-direction gradu-
ally increases. The jumps comes about from energetic con-
sideration. Since the anisotropy lowers the energy of the
moments when they are aligned perpendicularly to the
array, configurations with the moments pointing at any
polar angles other than θ ≈ 0 and θ ≈ π are of higher en-
ergies. Thus, for a moment to flip from the +ẑ-direction to
the −ẑ direction, it needs to pass through an energy bar-
rier. Only when the external field reaches a certain value
will the energy barrier be surpassed with the assistance of
the Zeeman energy [15]. This leads to the plateaux-and-
jumps structure in the magnetization shown in Figures 1a
and 1b. These energy barriers are sensitive to the orien-
tations of all the moments, and the magnitude of the ex-
ternal field for the jumps to occur depends on whether
the field is decreasing or increasing. For example, the first
jump for hd = 0.4 as the external field decreases corre-
sponds to the flipping of the moment at the center of the

3 × 3 array, as it is the most energetically favorable for
the dipolar interaction. For stronger dipolar interaction
(see Figs. 1c and 1d), the anisotropy no longer locks the
moments to be normal to the array. The steady state con-
figuration corresponds to one with moments pointing at
some angles from the ẑ-direction. A stronger he is there-
fore needed to align all the moments to be up or down
to achieve saturation. The dependence of the field needed
for saturation on the dipolar interaction strength will be
discussed later. The steps in the magnetization become
less apparent. For very strong dipolar interaction, the mo-
ments prefer to align parallel to the array, with an anti-
ferromagnetic in-plane alignment. This gives rise to the
vanishing Mz in the absence of an external field he = 0 in
Figure 1d.

It may be surprising to see the magnetization curves
in Figures 1b and 1c cross each other as the field is swept
down and up. It should be noted that similar feature has
been reported in other systems of small sizes [8,9]. Note
that the part of the magnetization curve for decreasing
external field is identical to the part for increasing exter-
nal field, as required by symmetry. The crossing comes
about from the sensitive dependence on history in small
arrays. As discussed in the previous section, when the field
is swept down gradually, the initial configuration of the
magnetic moments for the calculation at the external field
he − δh is taken to be the steady state configuration ob-
tained at the field he by solving the LLG equations for
the array. In doing so, the resulting configuration is highly
sensitive to the local energy barrier separating the config-
uration at he and possible configurations corresponding
to he − δh. The plateaux-and-jumps features in the mag-
netization curve come from the non-trivial transitions be-
tween allowed energies. These transitions, as the field is
swept down or up, can be viewed as a path in the com-
plicated energy landscape produced by the external field,
anisotropy and dipolar interaction. It turns out that these
transitions often do not go into the state of lowest possi-
ble energy for given external field and dipolar interaction
strength, as will be discussed in Figure 2.

It is illustrative to trace the energy of the system shown
in Figure 1a as the external field decreases. As the field
decreases, the system passes through different configura-
tions of the moments. Accompanied with each of these
configurations is an energy of the system. The energy E
is formally given by

E

Msm
= − 1

2

∑

i

m̂i · hdip

Ms
+

1
2

∑

i

k

Ms
sin2(mi, ẑ)

−
∑

i

m̂i · he

Ms
, (8)

where the argument in the sine function is the angle be-
tween the magnetic moment and the ẑ-axis. For the case
of weak dipolar interaction (hd = 0.4) studied here, the
second term with the sine function can be neglected, as
the magnetic moments are aligned perpendicular to the
array by the dominating anisotropy energy. Figure 2a
shows the energy as the external field is reduced. The inset
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Fig. 2. (a) The energy E/(Msm) of a 3×3 array as a function
of a decreasing external field he for a fixed dipolar interaction
strength of hd = 0.4. The inset shows the magnetization loop.
The labels A to H give the jumps in the magnetization (inset)
and the corresponding jumps in energy. (b) The possible en-
ergies for a system with at a given number of flipped moment
nr, when the moments are restricted to be perpendicular to the
array. The transition from A (nr = 0) to B (nr = 1) and from
E (nr = 3) to F (nr = 5) are shown. The open circles give the
energy of the configuration at A and E and the closed circles
give the energy at B and F. Also shown are the configurations
of the magnetic moments corresponding to the point A, B, E,
and F.

reproduces the hysteresis (as shown in Fig. 1a) as guide
to the eye. The labels A to H in the figure and the inset
mark the jumps in the magnetization and the correspond-
ing jumps in the energy of the system.

To further illustrate the nature of the changes in the
orientation of the moments, we focus on the changes
labelled A to B and E to F in Figure 2a. Decreasing
from very strong external field, the energy of the system

increases as the Zeeman energy becomes less negative, un-
til the system reaches the point labelled A (see Fig. 2a),
where the moments are all pointing in the +ẑ-direction
(as shown in Fig. 2b). At this field, the magnetic moment
at the center of the array flips. Note that even with the
simplification of restricting the moments to be aligned per-
pendicular to the array, the energy of a system with one
moment flipped can take on several possible energies, as
the flipped moment can be any one of the moments. Using
equation (8), it is possible to calculate the energy of all the
possible configurations corresponding to one flipped mo-
ment. The results are shown in Figure 2b at nr = 1, where
nr is the number of moments flipped to the −ẑ-direction.
There are three possible energies, corresponding to the
flipping of the moment at the center (one possible con-
figuration), the moment in the middle of an edge (four
possible equivalent configurations), and the moment at
the four corners (four possible equivalent configurations).
Thus, the nine configurations with one flipped moments
take on only three possible energies, with a non-degenerate
lowest energy and two higher energies of four-fold degen-
eracy. The transition from A to B turns out to be a tran-
sition to the configuration with the flipped moment at the
center of the array. The selection of the resulting config-
uration does not only depend on the energy of the con-
figuration, but also the energy barrier between the initial
and the final configurations. This, in turn, is controlled
by a combination of the anisotropy energy, dipole inter-
action and the Zeeman energy. The configuration as the
field decreases to he = 0 is characterized by the flipping
of a row of moments in the middle of the array (see con-
figuration labelled E in Fig. 2b). The configuration has a
net number of moments in the +ẑ-direction, and thus one
could associate a positive remanence to the array in this
case. Note that there are many configurations with three
flipped moments that give the same magnetization. The
energies of these configurations are shown in Figure 2b at
nr = 3. The configuration E is marked by the open circle.
The transition to F corresponds to a change in configu-
ration to one that has five flipped moments (labelled F).
There are, again, many configurations with different en-
ergies corresponding to five flipped moments in the array.
The one corresponding to F is marked by a closed circle.
Here the transition from E to F, while leads to a drop
in energy, does not go to the lowest possible energy that
the value of the magnetization allows. The energy barriers
from E to each of the possible energies with nr = 5 are
different, and the external field at the transition assists to
surpass the barrier from E to F.

We define the remanence Mr of an array as the
ẑ-component of the magnetization at he = 0 for a de-
creasing field. We have carried out calculations similar to
that in Figure 2a for different values of hd and found the
configurations at he = 0. Figure 3 shows the values of Mr,
together with the configurations for a decreasing field at
he = 0, for different dipolar interaction strengths hd in
a 3 × 3 array. Note that as hd increases, more magnetic
moments are aligned anti-parallel to their neighboring mo-
ments to make use of the increasing dipolar interaction.
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Fig. 3. The reduced remanence Mr/M0 for a decreasing ex-
ternal field in a 3 × 3 array with different dipole interaction
strengths. The sketches show the configurations of the mag-
netic moments at he = 0 for a decreasing field.

At high hd, the moments take on an in-plane anti-parallel
chain-like structure. The results show the high sensitivity
of the configuration at he = 0 to the dipolar interaction
strength.

Figure 4 shows the results of the magnetization as a
function of the external field for 4×4, 5×5 and 6×6 arrays
and different values of the dipolar interaction strengths.
As the size increases, the jumps become less abrupt but oc-
cur more frequently. As mentioned, these jumps are results
of a complicated energy landscape constructed by the dif-
ferent contributions to the total energy. As the system size
increases, the number of configurations for a given mag-
netization rapidly increases. There are, therefore, more lo-
cal minima in the energy but the energy barriers become
less severe to overcome. This gives rise to the many small
drops in Mz as the system size increases (see the figures
for hd = 0.2). Note that for small arrays, the ratio of the
number of moments at the boundary to the total number
of moments is high and the effective field on a moment
at the boundary is quite different from that on a moment
inside the array. This leads to the preferential switching of
magnetic moments, e.g., the switching of the moment in
the middle of a 3× 3 array as shown in Figure 2. We have
only studied square arrays in the present work. It will
also be interesting to study arrays with different width
and length, i.e., arrays with aspect ratios different from
unity. Note that the remanence of an array when dipolar
interaction cannot be neglected also depends on whether
the array consists of an odd or even number of moments.
In the absence of an external field, the moments tend to
make use of both the anisotropy energy and the dipolar

Fig. 4. Hysteresis loops for N × N arrays with N = 4, 5, and
6, for different dipolar interaction strengths hd.

interaction. Only arrays with an even number of moments
could possibly lead to a vanishing remanence. For larger
hd, there are again a rapid increase in the number of con-
figurations as the moments are no longer restricted to be
normal to the array. Thus the magnetization curve tends
to look smoother and the hysteresis loop is smaller. For
a dominating dipolar interaction (hd = 1.2), there is no
hysteresis loop as the moments are forced to take on an
in-plane orientation. These features are also observed in
arrays up to a size of 10 × 10.

Finally, as noted in the discussion on Figure 1, the
minimum value of the external field he,sat that leads to
saturated magnetization in an array increases with hd.
Figure 5 shows the dependence of he,sat on the size of
the array N for different values of the dipolar interaction
strength. Quite generally, size effects drop out for arrays
with size 10×10 or larger, as the magnetic moments inside
the array become dominating.

4 Summary

In summary, we studied the out-of-plane hysteresis loops
of small arrays of magnetic nanoparticles, under the influ-
ence of a perpendicular anisotropy energy, an external field
applied perpendicular to the array and the dipolar inter-
action. The magnetization exhibits a plateaux-and-jumps
structure as the external field is swept up and down. These
jumps are associated with jumps in the energy of the sys-
tem, and correspond to transition from one configuration
of the moment orientation to another. We analyzed the
energy of different configurations for a 3 × 3 array in the
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Fig. 5. The reduced external field he,sat/Ms as a function of
N for hd = 0.2, 0.6, and 1.2.

limit of weak dipolar interaction. These jumps are more
pronounced in arrays of smaller size and when the dipolar
interaction is weak. The configuration of magnetic mo-
ments at vanishing external field as the field is swept up
and down are found to be highly sensitive to the dipolar
interaction. This sensitivity comes about from the forma-
tion of a complicated energy landscape in the parameter
(phase) space constructed by the effects of the anisotropy,
dipolar interaction, and the external field. While we have
confined our studies to square arrays and to steady state
configurations of magnetic moments, it would definitely be
interesting to extend the present work to investigate the
dependence of the magnetization processes on the different

geometrical patterns of the array, e.g., triangular
arrays, and the time that a system needs to approach the
steady state.
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